Products
Home /

PROCESSING SERVICE

/Crystals and optics processing services

Crystals and optics processing services

HGO is a company has skillful workers with wide processing experiences and skillful processing technique. Thus we also offer processing service such as oriented, cutting, grinding, polishing ,repolishing, coating ,recoating and diffusion bonding etc. Customers are very welcome to contact with us for further information.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Processing service for various crystals and optics.

HGO offer processing service such as oriented, cutting, grinding, polishing ,repolishing, coating ,recoating and diffusion bonding etc. Customers are very welcome to contact with us for further information.


HGO offer standard specifications:

Dimension Tolerance

±0.1mm

Orientation

+/-0.2°

Flatness

λ/10 @ 632.8nm

Wavefront distortion

λ/10@ 632.8nm

Surface Quality

10/5 per MIL-O-13830B

Parallelism

10

Perpendicularity

10

Bevel/Chamfer

<0.1mm@45deg.

Chips

<0.1mm

Clear Aperture

>95%

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz or Higher damaged threshold coating are also vailable

Why Choose HGO?

HG OPTRONICS.,INC. is a company has skillful workers with wide processing experiences and skillful processing technique.

What is more, HGO has advanced inspection instruments such as fluorescence lifetime measurements, ZYGO, Lambda 750 and UV-3600Plus spectrometer, Video measurement systerm, Extinction ratio measurement , Stress measurement system , profile measurement system , goniometer, X-ray orientation, microscopes etc. Based on well equipped instruments, almost all specs related to crystals will be well measured and guaranteed.
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Diode pumped picosecond Pr:YLF laser crystals
Pr:YLF crystals Protactinium doped Yttrium Lithium Fluoride

HGO grows Pr:YLF laser crystals using Czochralski technology. Pr3+:YLF has been found as promising laser material for producing visible lasers directly and UV lasers through intracavity second-harmonic generation. Very few laser materials have the necessary properties for the realization of lasing in the visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for use with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark red (720 nm, 3P0 3F3+3F4) spectral regions.

Read More
TGG crystal Terbium Gallium Garnet  Magneto optical crystals
TGG crystal Terbium Gallium Garnet

TGG is an excellent magneto-optical crystal used in various Faraday devices(Polarizer and Isolator) in the range of 400nm-1100nm, excluding 475-500nm.

Read More
Diffusion Bonded Crystals Modules
Diffusion Bonded Crystals with High Damage Threshold

Diffusion bonded crystals consist of one laser crystal and one or two undoped material. They are combined by optical contact method and further bonded under high temperature. Diffusion Bonded Crystal helps to decrease thermal lens effect considerably of laser crystals, provides integral components to make compact lasers. HGO are able to supply various standard assembly and special customized bonding crystals.These diffusion bonded composite crystals have different wedge structures, Brewster angles, etc. It is used to effectively reduce the thermal effect of solid-state high-power lasers.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
CaF2 crystal windows
CaF2 crystal Calcium Fluoride windows

CaF2 or Calcium Fluoride is a cubic crystal with an excellent transmission from 130 nm to 10 μm and has widespread applications as transparent windows in the ultraviolet and infrared spectra.

Read More
Cr4+:YAG passive q-switch
Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

Read More
YbYAG Crystals for DPSS lasers
Yb:YAG crystals Ytterbium Doped Yttrium Aluminum Garnet

YbYAG crystal is more suitable for diode-pumping than the traditional Nd-doped systems. It can be pumped at 0.94 μm laser output. Compared with the commonly used Nd:YAG crystal, Yb:YAG crystal has a much larger absorption bandwidth to reduce thermal management requirements for diode lasers, a longer upper-state lifetime, three to four times lower thermal loading per unit pump power. Yb:YAG crystal is expected to replace Nd:YAG crystal for high power diode-pumped lasers and other potential applications.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact