Products
Home /

PROCESSING SERVICE

/Crystals and optics processing services

Crystals and optics processing services

HGO is a company has skillful workers with wide processing experiences and skillful processing technique. Thus we also offer processing service such as oriented, cutting, grinding, polishing ,repolishing, coating ,recoating and diffusion bonding etc. Customers are very welcome to contact with us for further information.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Processing service for various crystals and optics.

HGO offer processing service such as oriented, cutting, grinding, polishing ,repolishing, coating ,recoating and diffusion bonding etc. Customers are very welcome to contact with us for further information.


HGO offer standard specifications:

Dimension Tolerance

±0.1mm

Orientation

+/-0.2°

Flatness

λ/10 @ 632.8nm

Wavefront distortion

λ/10@ 632.8nm

Surface Quality

10/5 per MIL-O-13830B

Parallelism

10

Perpendicularity

10

Bevel/Chamfer

<0.1mm@45deg.

Chips

<0.1mm

Clear Aperture

>95%

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz or Higher damaged threshold coating are also vailable

Why Choose HGO?

HG OPTRONICS.,INC. is a company has skillful workers with wide processing experiences and skillful processing technique.

What is more, HGO has advanced inspection instruments such as fluorescence lifetime measurements, ZYGO, Lambda 750 and UV-3600Plus spectrometer, Video measurement systerm, Extinction ratio measurement , Stress measurement system , profile measurement system , goniometer, X-ray orientation, microscopes etc. Based on well equipped instruments, almost all specs related to crystals will be well measured and guaranteed.
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Diffusion Bonded Crystals Modules
Diffusion Bonded Crystals with High Damage Threshold

Diffusion bonded crystals consist of one laser crystal and one or two undoped material. They are combined by optical contact method and further bonded under high temperature. Diffusion Bonded Crystal helps to decrease thermal lens effect considerably of laser crystals, provides integral components to make compact lasers. HGO are able to supply various standard assembly and special customized bonding crystals.These diffusion bonded composite crystals have different wedge structures, Brewster angles, etc. It is used to effectively reduce the thermal effect of solid-state high-power lasers.

Read More
α-BBO (α-BaB2O4) birefringent crystals
a-BBO Crystal alpha -Barium Borate

α-BBO (α-BaB2O4) is a negative uniaxial crystal which has large birefringence over a broad transparent range of 190nm to 3500nm. α-BBO is an excellent crystal especially in UV and high power applications. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of Beta-BBO. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes. Instead, alpha-BBO is widely used for fabrication of polarizers, polarizing beam displacers, phase retarders, birefringent plates, and time delay compensators especially those for UV and high power lasers.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
TmYLF laser crystal
Tm:YLF crystal Thulium-doped Yttrium Lithium Fluoride

HGO grows Tm:YLF laser crystals using Czochralski technology. Tm:YLF is an important middle infrared laser crystal. Because Tm:YLF is negative uniaxial crystal, whose thermal refractive index coefficient is negative, some thermal distortion may be counteracted and high-quality light can be output. Conveniently pumped at 792nm, 1.9μm linearly polarized beam is output in a axis, and non-linearly polarized beam is output in c axis. The YLF crystals has low non-linear refraction index value and thermo optical constants, which makes these crystals applicable in research, development, education, production, photonics, optic, laser technology and telecommunications. Besides, Tm3+:YLF lasers are ideal pump sources for 2.1 μm Ho3+:YAG lasers. This is due to a good overlap of Tm3+:YLF emission and Ho3+:YAG absorption spectra and the capacity of producing linearly polarized output. What is more, the refractive index of Tm3+:YLF decreases with temperature, leading to a negative thermal lens that is partly compensated by a positive lens effect due to end face bulging.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
KDP & DKDP/KD*P Crystal
KDP & DKDP Crystal Potassium Dihydrogen Phosphate and Potassium Dideuterium Phosphate

KDP Potassium Dihydrogen Phosphate and KD*P or DKDP Potassium Dideuterium Phosphate are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling and quadrupling of a Nd:YAG laser under the room temperature. In addition, they are also excellent electro-optic crystals with high electro-optic coefficients, widely used as electro-optical modulators, such as Q-switches, Pockels Cells, etc.

Read More
high laser induced damage threshold Er:Yb:glass
Er:Yb:glass crystal Erbium and ytterbium co-doped phosphate glass

Er3+, Yb3+ co-doped phosphate glass is a well-known and commonly used active medium for lasers emitting in the “eye-safe” spectral range of 1,5-1,6 µm. As an eye-safe wavelength laser, 1540um ,Er3+/Yb3+ co-doped phosphate glass lasers have attracted much attention for their compactness and low cost, such as laser generation and signal amplification because the wavelength of 1540nm is just at the position of the eye-safe and the fiber optic communication window. 1540nm lasers have used in ranging finder, radar, target recognition. Er3+/Yb3+ co-doped phosphate glass cooperate with passive Q-Switch crystal cospinel can get 1540nm pulse solid-state laser.

Read More
LiNbO3 LN nonlinear crystal
LiNbO3 crystal Lithium niobate

LiNbO3 is widely used as electro-optic modulators and Q-switches for Nd:YAG, Nd:YLF and Ti:Sapphire lasers as well as modulators for fiber optics.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact