Products
Home /CRYSTALS /

Diffusion Bonded crystals

/Diffusion Bonded Crystals with High Damage Threshold

Diffusion Bonded Crystals with High Damage Threshold

Diffusion bonded crystals consist of one laser crystal and one or two undoped material. They are combined by optical contact method and further bonded under high temperature. Diffusion Bonded Crystal helps to decrease thermal lens effect considerably of laser crystals, provides integral components to make compact lasers. HGO are able to supply various standard assembly and special customized bonding crystals.These diffusion bonded composite crystals have different wedge structures, Brewster angles, etc. It is used to effectively reduce the thermal effect of solid-state high-power lasers.

  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    5-6 weeks
Share To : f t y b l ins
  • Product Detail

Descriptions

 

Diffusion Bonded Crystals largely reduce thermal lens effect of laser crystals, provides integral components to make compact lasers.

 

 

Diffusion bonding process:

1) Perfect optical contact between the crystals to be bonded;

2)Heating up of the two parts very slowly , to a very high temperature, probably 2/3 of the melt temperature or more, and exerting pressure to press the two parts together;

3) Keeping the bonded crystals for certain period of time at this high temperature, so that diffusion takes place;

4)Slowly cooling the crystals (24 hours) down to room temperature.

 

Product Serials:

1) YAG+Nd:YAG+ Cr4+:YAG; YAG+Nd:Ce:YAG+Cr4+:YAG; YAG+Yb:YAG+Cr4+:YAG

2)YVO4+ Nd:YVO4 + YVO4; GdVO4+ Nd:GdVO4 + GdVO4; YAG+Nd:YAG+ YAG

3) YLF+Nd:YLF+ YLF; YLF+Pr:YLF+ YLF

4) YAG+Ho:YAG+YAG; YAG+Tm:YAG+:YAG

5) Tisapphire+Tisapphire

Diffusion bonding for other crystal assambly types are also available.


Advantages:

1)To improve and enchance thermal the thermal performance;

2)Lower thermal lens effect of end surfaces.

3)Increase the output power of laser crystals

 

Main applications:

1)Industrial laser;

2)Biomedical laser/Medical laser;

3)Beauty laser;

4)Laser Lidar

5)Laser ranger finder

6)High power laser system etc.

 

Specifications:

Flatness

λ/10 @ 632.8nm

Wavefront distortion

λ/10@ 632.8nm

Surface Quality

10/5 per MIL-O-13830A

Parallelism

10″

Perpendicularity

5′

Bevel/Chamfer

<0.1mm@45deg

Chips

<0.1mm

Clear Aperture

>95%

Quality Warranty Period

One year under proper use

Coating

AR/HR/PR (IAD, EB, IBS)

Delivery Time

5-6 weeks

 

Why Choose HGO ?

HG OPTRONICS.,INC. is one of the earliest diffusion bonding crystals manufactures in China. Based on advanced bonding technology , wide experiences and techniques upgrading in the past over 13 years, HGO have become a top diffusion bonding crystals supplier. HGO has ability to provide different bonding configurations and various product structure for different laser systems and applications.

We are also interested in discussing and manufacturing new material combinations and structural geometries. Our goal is to provide high-quality composite materials that can provide solutions to your system needs, so we encourage all design submissions. Please contact us for more information and technical support.

 

 

 

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
TGG crystal Terbium Gallium Garnet  Magneto optical crystals
TGG crystal Terbium Gallium Garnet

TGG is an excellent magneto-optical crystal used in various Faraday devices(Polarizer and Isolator) in the range of 400nm-1100nm, excluding 475-500nm.

Read More
Ti:sapphire laser crystals
Ti:Sapphire Crystal Titanium Doped Sapphire

Ti:Sapphire crystal is the most widely used tunable solid-state laser material combining the supreme physical and optical properties with the extremely broad lasing range. Its lasing bandwidth can support pulses < 10fs making it the crystal of choice for femtosecond mode-locked oscillators and amplifiers. The absorption band of Ti:Sapphire centers at ~ 490 nm so it may be conveniently pumped by various laser sources such as argon ion lasers or frequency doubled Nd:YAG, Nd:YLF, Nd:YVO4 lasers at ~530nm. Laser designers are using Ti:sapphire to generate femtosecond pulses to create new industrial tools. A properly delivered femtosecond laser pulse interacts within the target leaving the surrounding area undisturbed. Newly developed femtosecond pulsed lasers micro-machine complex fine structures in glass, metal and other materials. Active waveguides can be written below the surface, integrating optical devices within the body of a substrate. Defects in photomasks can be repaired without disturbing neighbouring patterns. And it is now possible to achieve cellular resolution in vivo for medical diagnosis with femtosecond pulse lasers.

Read More
Pure YVO4 Yttrium Orthovanadate crystals
YVO4 crystal Yttrium Orthovanadate

The Yttrium Orthovanadate (YVO4) is a positive uniaxial crystal grown with Czochralski method. It has good temperature stability and physical and mechanical properties. It is ideal for optical polarizing components because of its wide transparency range and large birefringence. It is an excellent synthetic substitute for Calcite (CaCO3) and Rutile (TiO2) crystals in many applications including fiber optic isolators and circulators, interleavers, beam displacers and other polarizing optics.

Read More
Ho:YAG Crystal for solid-state laser
Ho:YAG Crystals (Holmium-doped Yttrium Aluminum Garnet)

Holmium-doped Yttrium Aluminum Garnet (Ho:YAG) is an important solid-state laser crystal. Due to the excellent physicochemical properties of theYAG matrix, it can withstand high thermal loads and is an important pumpsource laser crystal for mid-wave infrared lasers. At the same time, it is alsoan ideal light source for coherent Doppler wind radar, differentialabsorption radar, and laser rangefinders.

Read More
China Customized Dispersion Prism Manufacturers
30° - 60° - 90° Littrow Dispersion Prisms

Dispersion Prisms are used in applications that require separating the incident light into its component wavelengths. For example, when white light enters a Dispersion Prism, it is separated into its three components: red, green, and blue. Dispersion Prisms are ideal for spectroscopy or laser tuning.

Read More
Fiber Laser Protective Lens Machine Scanning
Laser Beam Collimation Lens

Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications. Laser Lenses include a range of lens types including HGQ Lenses, Cylinder Lenses, or Laser Generator Lenses. Laser Lenseare designed to focus light in several different ways depending on the lens type, such as focusing down to a point,a line, or a ring. Many different lens types are available in a range of wavelengths.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
IR Windows Germanium Windows

Germanium (Ge) is the preferred lens and window material for high performance infrared imaging systems in the 8–12 um wavelength band.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact