Products
Home /CRYSTALS /

Diffusion Bonded crystals

/Diffusion Bonded Crystals with High Damage Threshold

Diffusion Bonded Crystals with High Damage Threshold

Diffusion bonded crystals consist of one laser crystal and one or two undoped material. They are combined by optical contact method and further bonded under high temperature. Diffusion Bonded Crystal helps to decrease thermal lens effect considerably of laser crystals, provides integral components to make compact lasers. HGO are able to supply various standard assembly and special customized bonding crystals.These diffusion bonded composite crystals have different wedge structures, Brewster angles, etc. It is used to effectively reduce the thermal effect of solid-state high-power lasers.

  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    5-6 weeks
Share To : f t y b l ins
  • Product Detail

Descriptions


Diffusion Bonded Crystals largely reduce thermal lens effect of laser crystals, provides integral components to make compact lasers.


Diffusion bonding process:

1) Perfect optical contact between the crystals to be bonded;

2)Heating up of the two parts very slowly , to a very high temperature, probably 2/3 of the melt temperature or more, and exerting pressure to press the two parts together;

3) Keeping the bonded crystals for certain period of time at this high temperature, so that diffusion takes place;

4)Slowly cooling the crystals (24 hours) down to room temperature.


Product Serials:

1) YAG+Nd:YAG+ Cr4+:YAG; YAG+Nd:Ce:YAG+Cr4+:YAG; YAG+Yb:YAG+Cr4+:YAG

2)YVO4+ Nd:YVO4 + YVO4; GdVO4+ Nd:GdVO4 + GdVO4; YAG+Nd:YAG+ YAG

3) YLF+Nd:YLF+ YLF; YLF+Pr:YLF+ YLF

4) YAG+Ho:YAG+YAG; YAG+Tm:YAG+:YAG

5) Tisapphire+Tisapphire

Diffusion bonding for other crystal assambly types are also available.


Advantages:

1)To improve and enchance thermal the thermal performance;

2)Lower thermal lens effect of end surfaces.

3)Increase the output power of laser crystals


Main applications:

1)Industrial laser;

2)Biomedical laser/Medical laser;

3)Beauty laser;

4)Laser Lidar

5)Laser ranger finder

6)High power laser system etc.


Specifications:

Flatness

λ/10 @ 632.8nm

Wavefront distortion

λ/10@ 632.8nm

Surface Quality

10/5 per MIL-O-13830A

Parallelism

10″

Perpendicularity

5′

Bevel/Chamfer

<0.1mm@45deg

Chips

<0.1mm

Clear Aperture

>95%

Quality Warranty Period

One year under proper use

Coating

AR/HR/PR (IAD, EB, IBS)

Delivery Time

5-6 weeks


Why Choose HGO ?

HG OPTRONICS.,INC. is one of the earliest diffusion bonding crystals manufactures in China. Based on advanced bonding technology , wide experiences and techniques upgrading in the past over 13 years, HGO have become a top diffusion bonding crystals supplier. HGO has ability to provide different bonding configurations and various product structure for different laser systems and applications.

We are also interested in discussing and manufacturing new material combinations and structural geometries. Our goal is to provide high-quality composite materials that can provide solutions to your system needs, so we encourage all design submissions. Please contact us for more information and technical support.




Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Cr4+:YAG passive q-switch
Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

Read More
Optical Glass Domes
Optical Domes

Optical domes are lenses with two concentric spherical surfaces. Sometimes they are being referred to as bent plan parallel plates. Consequently it is customary to define parallelism between two surfaces as the maximum thickness variation between the two surfaces.

Read More
Fiber Laser Protective Lens Machine Scanning
Laser Beam Collimation Lens

Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications. Laser Lenses include a range of lens types including HGQ Lenses, Cylinder Lenses, or Laser Generator Lenses. Laser Lenseare designed to focus light in several different ways depending on the lens type, such as focusing down to a point,a line, or a ring. Many different lens types are available in a range of wavelengths.

Read More
Laser Grade Meniscus Lenses
Positive Meniscus Lenses And Negative Meniscus Lenses

The Positive Meniscus Lenses are a convex-concave lens, but it is thicker at the center than at the edges. They are felt polished and are used universally in the ophthalmic industry where convention dictates that lens power be specified in Diopters. The Negative Meniscus Lenses are a convex-concave lens, but it is thinner at the center than at the edges. Otherwise description is similar to Plano Concave lenses.

Read More
retardation plates or phase shifters
Waveplate

Waveplates (retardation plates or phase shifters) are made from materials which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent material varies inversely with their refractive indices. This difference in velocities gives rise to a phase difference when the two beams recombine.

Read More
C-Lens
Laser Optics

C-lens are specifically designed for fiber optics applications such as collimator, isolator, switch, collimator array and laser assembly. Compare to other gradient index lens, C-lens have several advantages including low cost, low insertion loss in long working distance, and wide working distance range. With our experienced optical design engineers, HG OPTRONICS can also provide custom designed C-lens per customer's requirement.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
Nd:GdVO4 laser host crystals
Nd:GdVO4 Crystal Neodymium Doped Gadolinium Orthovanadate

Nd:GdVO4, is a promising material for diode pumped lasers. Similar to the more well-known Nd:YVO4 crystal, Nd:GdVO4 crystal also exhibits high gain, low threshold, and high absorption coefficients at pumping wavelengths. Nd:GdVO4 has the additional advantage over Nd:YVO4 of a much higher thermal conductivity. For CW lasing at 1.06 um and 1.34 um and intracavity doubling with KTP and LBO, the gadolinium vanadate have produced a higher slope efficiency or optical conversion than Nd:YVO4.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact