Products
Home /OPTICS /

Optical Mirrors

/800nm Highly Dispersive Ultrafast Mirrors

800nm Highly Dispersive Ultrafast Mirrors


Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.


  • Product Origin:

    China
  • Order(MOQ):

    10
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

3. High Power Grade Laser Mirror

Laser Line Mirrors are used for beam-steering in demanding laser applications. Laser Line Mirrors are Optical Mirrors that have been designed for specific laser types or wavelengths.


3.1. What HG OPTRONICS can offer for you?

Substrate Materials:

N-BK7, Fused silica, Pyrex

Dimensional tolerance:

+/-0.1mm

Surface quality:

20-10

Parallelism:

1’

Flatness:

λ/8 per 25mm@633nm

Bevel:

Protective

One surface:

Laser grade Polished and HR coating

The other surface:

Fine ground

Angle of incident:

0°or 45°


3.2. What are the key features of Laser Mirror?

HG OPTRONICS  can produce the laser mirror with the following features:

1)Specified wavelength applications

2)High precision

3)High reflectivity

4)High damage threshold


3.3. Which wavelength can HG OPTRONICS provide?

HG OPTRONICS can offer the Laser Mirror with 355nm, 532nm, 1064nm, 1047nm, 1053n. Others can be available according to customers’ requirements.



Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Protected Aluminum Metallic Coated Mirror
Protected Gold Metallic Coated Mirror

HG Optronics.,INC. can provide Metal Coated Mirror,Dielectric Coated Mirror and Dichroic Mirror which are made of substrate such as BK7, Optical glass, Fused Silica, CaF2 and so on.

Read More
High Reflective Dichroic Mirror
High Reflective Broadband Dichroic Mirrors

The dichroic mirror is a mirror with significantly different reflection or transmission properties at two different wavelengths, it’s characterized by almost complete transmission of light at certain wavelengths and almost complete reflection of light at other wavelengths. It can be widely used in Laser technology applications.

Read More
NdYAG Crystal for solid-state laser
Nd:YAG crystals Neodymium Doped Yttrium Aluminum Garnet

Nd:YAG is the earliest and most famous laser host crystal. Since it combines great advantages in many basic properties,Nd:YAG is the ubiquitous presence for near-infrared solid-state lasers and their frequency-doubler, tripler, and higher order multiplier. It is widely used in industrial, medical, military and scientific fields.. Nd:YAG crystals are wildly used in all types of solid-state laser systems-frequency-doubled continuous wave, high-energy Q-switched, and so forth.Its good fluorescent lifetime thermal conductivity and physical strengths makes it suitable for high power lamp pumped laser.

Read More
UV Fused Silica Double-Convex  Lenses
Double-Convex Lenses

Double Convex Lenses are used in image relay applications, or for imaging objects at close conjugates. Double Convex Lenses have positive focal lengths, along with two convex surfaces with equal radii. Aberrations will increase as the conjugate ratios increase.  Double-Convex Lenses are used in a range of industries or applications. HG OPTRONICS offers Double Convex lenses with a variety of coating options.

Read More
Diode pumped picosecond Pr:YLF laser crystals
Pr:YLF crystals Protactinium doped Yttrium Lithium Fluoride

HGO grows Pr:YLF laser crystals using Czochralski technology. Pr3+:YLF has been found as promising laser material for producing visible lasers directly and UV lasers through intracavity second-harmonic generation. Very few laser materials have the necessary properties for the realization of lasing in the visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for use with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark red (720 nm, 3P0 3F3+3F4) spectral regions.

Read More
Large Size Plano Concave Cylindrical Lens
Plano-Concave Cylindrical Lenses

A cylindrical lens is a lens that focuses light on a line instead of a point, like a spherical lens. The curved face or faces of a cylindrical lens are sections of a cylinder, and focus the image passing through it into a line parallel to the intersection of the surface of the lens and a plane tangent to it. The lens compresses the image in the direction perpendicular to this line and leaves it unaltered in the direction parallel to it (in the tangent plane). In a light sheet microscope, a cylindrical lens is placed in front of the illumination objective to create the light sheet used for imaging. Cylindrical lenses focus or expand light in one axis only. They can be used to focus light into a thin line in optical metrology, laser scanning, spectroscopic, laser diode, acousto-optic, and optical processor applications. They can also be used to expand the output of a laser diode into a symmetrical beam. Cylindrical lenses are widely used in telecom applications like WSS, 40G/100G modules and laser applications like pump laser modules

Read More
Square Sapphire Glass Windows
Customized Optical Sapphire Crystal Glass Window

Sapphire window retains its high strength at high temperatures, has good thermal properties and excellent transparency. It is chemically resistant to common acids and alkali at temperatures up to 1000 °C as well as to HF below 300 °C. These properties encourage its wide use in hostile environments where optical transmission in the range from the vacuum ultraviolet to the near infrared is required.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact