Products
Home /CRYSTALS /

Passive Q-switch

/Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Descriptions:



Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel is a relatively new material for passive Q-switching specially for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths.



Main applications:

1) Passive Q-switch for Radar and Ranging Er:Glass lasers @1,35µm

2) Passive Q-switch for Medical lasers @1,500 µm


Advantages:

1) Rare excited absorption

2) High constant of Q-switch

3) High absorption section

4) Long excited lifetime

5) Evenly distributed cobalt

6) Wide absorption band

Basic properties of Cospinel

Chemical formula

Co2+:MgAl2O4

Crystal structure

Cubic

Lattice parameters

8.07Å

Density

3.62 g/cm3

Melting Point

2105°C

Refractive Index

n=1.6948 @1.54 μm

Thermal Conductivity/(W·cm-1·K-1@25°C)

0.033W

Thermal Expansion /10-6 /°C@25°C

1.046

Specific Heat/ (J·g-1·K-1)

5.9

Hardness (Mohs)

8.2

Extinction Ratio

25dB

Density

1.6-1.75


HGO offers Cospinel specifications:

Orientation:

<100> or <111>

Initial absorption coefficient

0~7cm-1@1064nm

Initial transmission

50%~99%

Wavefront Distortion:

λ/8per inch @ 632.8 nm

Surface Quality:

20/10 Scratch/Dig MIL-O-1380A

Parallelism:

< 10

Perpendicularity:

< 10

Clear Aperture:

> 90%

Surface Flatness:

< λ/10 @ 632.8 nm

Chamfer:

< 0.1 mm @ 45deg.

Size

Upon customer request

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz

Quality Warranty Period

One year under proper use


Why Choose HGO ?

HG OPTRONICS.,INC. supplies very high quality of Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel.The use of high quality starting materials for crystal growth, boule interferometry, and precise measurement of initial transmission and absorption using transmission spectroscopy and ZYGO measurements, assures that each crystal will comply with customer’s specification and perform well in laser system.

Tolerance of initial transmission can be well controlled within as high precision as 0.5% which could be very essential to some delicate laser systems. Besides, based on HGO’s advanced bonding technology, high quality of optical bonding kits between Er:Yb:glass and cospinel q-switch can also be supplied.

HGO could also provide high quality polishing and apply high laser induced damage threshold coating for the switch.and also for other related cavity lens and mirrors for the eye safe lasers systems.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Cr4+:YAG passive q-switch
Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

Read More
Nd:YLF Laser Crystal
Nd:YLF Crystal Neodymium-doped yttrium lithium fluoride

HGO grows Nd:YLF laser crystals using Czochralski technology. Nd3+:YLF crystal is characterized by its long lifetime of 4F3/2 neodymium energy level. Compared to Nd:YAG, the lower thermal conductivity and a weak negative dn/dT lead to lower thermal distortions and allow to achieve a better output beam quality. Another distinctive feature is the high UV transparency, which is favorable for pumping with xenon flash lamps.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
α-BBO (α-BaB2O4) birefringent crystals
a-BBO Crystal alpha -Barium Borate

α-BBO (α-BaB2O4) is a negative uniaxial crystal which has large birefringence over a broad transparent range of 190nm to 3500nm. α-BBO is an excellent crystal especially in UV and high power applications. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of Beta-BBO. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes. Instead, alpha-BBO is widely used for fabrication of polarizers, polarizing beam displacers, phase retarders, birefringent plates, and time delay compensators especially those for UV and high power lasers.

Read More
HoYLF laser crystal
Ho:YLF crystal Holmium-doped Yttrium Lithium Fluoride

HGO grows Ho:YLF laser crystals using Czochralski technology. Ho:YLF is a very attractive laser material, because the lifetime of the upper laser level is much longer ( ~ 14 ms) than in Ho:YAG and the emission cross sections are higher. Additionally the thermal lens in Ho:YLF is much weaker, which helps to generate diffraction limited beams even under intense end-pumping. The primary advantage of directly pumping the Ho 5I7 is that it does not have to depend on energy transfer, which lends itself to various radiative and non-radiative losses. Up-conversion losses that have deleterious effect in high-energy Q-switched lasers are eliminated.

Read More
Polarizing Beamsplitter Cubes Mounted And Unmounted |
Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarization Beamsplitter Cubes are constructed by cemented two right angle prisms, the hypotenuse of one prism is coated with polarization dielectric coating. When used with normal incident, un-polarized light, the incident beam is separated into two polarized beams, p-polarized component is passed straight through, s-polarized component is reflected out at 90deg.

Read More
Long Pass Filter Fluorescence
Longpass Filters For Vision Inspection Apllication

Longpass filters are ideal for a variety of applications, such as gas monitoring, temperature, sensing, thermal imaging and motion sensing, etc. Longpass filters block shorter wavelengths and transmit longer wavelengths. Blocking can be from reflectance, absorption or a combination. Transmission in the pass band can be enhanced with an antireflection coating on the second surface.

Read More
Ultra Narrow Bandpass Filter
IR Cut Bandpass Antireflection Coating Filter

A band pass filter is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range, and it’s used to selectively transmit a portion of the spectrum while rejecting all other wavelengths.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact