Products
Home /OPTICS /

Polarization Optics

/Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarization Beamsplitter Cubes are constructed by cemented two right angle prisms, the hypotenuse of one prism is coated with polarization dielectric coating.


When used with normal incident, un-polarized light, the incident beam is separated into two polarized beams, p-polarized component is passed straight through, s-polarized component is reflected out at 90deg.


  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

1.1、What is a Polarizing Beamsplitter Cube?

A polarizing beamsplitter cube consists of two right angle prisms cemented together. The hypotenuse face of one prism is coated with a special multi layer dielectric coating. When circularly polarized or natural light enters the cube vertically, it separated into two linearly polarized beams. The transmitted beam is P-polarized while the reflected beam is S-polarized.  And when a linearly polarized light comes in, it similarly divided into two beams. But the energy ratio of the two outgoing beams depends on the polarization of the incident beam. Polarizing beamsplitter cubes are available for many laser wavelengths and broadband ranges.


1.2、How does a polarizing beamsplitter Cube work?

Polarizing Beamsplitter is designed to split unpolarized light at a specific Reflection/Transmission (R/T) ratio with unspecified polarization tendencies.

Polarizing beamsplitters are designed to split light into reflected S-polarized and transmitted P-polarized beams.


1.3、What is a Polarizing beamsplitter Cube used for?

Beamsplitter is also a kind of filter, it is used to split or combine laser beam. However Polarization BeamSplitters are used to split or combine two perpendicular polarization laser beam. The performance of beam splitter depends on the coating specifications.  They are common components in laser or illumination systems. Also ideal for fluorescence applications, optical interferometry, or life science or semiconductor instrumentation. Light can be split by percentage of overall intensity, wavelength, or polarization state.

To select a suitable beamsplitter, you need to consider the type, coating, transmission range and damage threshold.


1.4. Specifications:

Material:

BK7, Fused Silica, Borofloat etc. Glass

Diameter Tolerance:

+/-0.1mm

Flatness:

λ/4@633nm

Beam deviation:

3 arc min

Surface Quality:

60-40

Front surface (S1):

Partial reflective coating

Back surface (S2):

AR coating

Clear aperture:

>90%

Standard Coating:

T/R=50/50±5%, for random polarization ;

T=(Ts+Tp)/2,R=(Rs+Rp)/2


Note: Other sizes, split ratio and coating are available upon request.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Narrow Band Beamsplitters Cube
Non-Polarizing Cube Beamsplitters

Non-Polarizing Cube Beamsplitters also called NPBS Cube is a more sophisticated type consisting of two right- angle prisms cemented together at their hypotenuse faces.The cemented face of one prism is coated. Before cementing, with a metallic or dielectric layer having the desired reflecting properties, both in the percentage of reflection and the desired color. The absorption loss to the coating is minimal and transmission and reflection could be designed to 10%, 20%, 30%, 40%, 50%, etc.

Read More
Polarization Beamsplitter Cubes
Broadband Polarizing Cube Beamsplitters

Beamsplitter Cubes are constructed by cemented two right angle prisms.  The hypotenuse of one prism is coated with polarization dielectric coating.

Read More
Elliptical Plate Beamsplitters
Visible And NIR Plate Beamsplitters

Our beamsplitter plates can be used in high power laser system. When using beamsplitter plates, it is important to make it in mind that the two partial beams travel in different optical paths. The optical paths depend on the incident angle and the thickness of plates.

Read More
Laser Wndows With Damage Threshold V-Coating
High Power Laser Line Windows

Laser Protect Windows(Laser protective glass, protective filters or welding protective windows) are used to save for the high cost of laser optics.

Read More
Laser Line Right Angle Prisms
Laser Grade Prisms

Prisms are transparent optical devices which refract or reflect light. They have manifold applications in laser technology.

Read More
Lithium Triborate (LiB3O5 or LBO Crystal)
LBO Nonlinear Optical crystal Lithium Triborate Crystal

HGO grows LBO Nonlinear crystals using flux technology. LBO crystals is an excellent nonlinear crystal.For frequency doubling(SHG),tripling(THG) of Nd:YAG,Nd:YLF,Nd:YVO4 lasers, it is one of the most useful nonlinear optical materials in ultraviolet and visible laser applications.

Read More
LiF crystal  windows
LiF crystal lithium fluoride

HGO grows LiF crystals in house using Czochralski technology. LiF crystal or lithium fluoride crystal is an optical material with outstanding transmittance in VUV region. It is also used for windows, prisms, and lenses in the visible and infrared in 0.104µm-7µm. LiF single crystal is sensitive to thermal shock and would be attacked by atmospheric moisture at 400°C. When working at a high temperature of 600°C, the LiF crystal softens and is slightly plastic, so it can be bent into radius plates. In addition irradiation produces color centers. Hence, users should take measures to protect LiF crystals from moisture and high energy radiation damages. What is more LiF can be cleaved along (100) plane and less commonly (110) plane. The optical characteristics are good and yet the structure is not perfect and cleavage is difficult.

Read More
Pure YVO4 Yttrium Orthovanadate crystals
YVO4 crystal Yttrium Orthovanadate

The Yttrium Orthovanadate (YVO4) is a positive uniaxial crystal grown with Czochralski method. It has good temperature stability and physical and mechanical properties. It is ideal for optical polarizing components because of its wide transparency range and large birefringence. It is an excellent synthetic substitute for Calcite (CaCO3) and Rutile (TiO2) crystals in many applications including fiber optic isolators and circulators, interleavers, beam displacers and other polarizing optics.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact