Products
Home /OPTICS /

Polarization Optics

/Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarizing Beamsplitter Cubes Mounted And Unmounted

Polarization Beamsplitter Cubes are constructed by cemented two right angle prisms, the hypotenuse of one prism is coated with polarization dielectric coating.


When used with normal incident, un-polarized light, the incident beam is separated into two polarized beams, p-polarized component is passed straight through, s-polarized component is reflected out at 90deg.


  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    4 weeks
Share To : f t y b l ins
  • Product Detail

1.1、What is a Polarizing Beamsplitter Cube?

A polarizing beamsplitter cube consists of two right angle prisms cemented together. The hypotenuse face of one prism is coated with a special multi layer dielectric coating. When circularly polarized or natural light enters the cube vertically, it separated into two linearly polarized beams. The transmitted beam is P-polarized while the reflected beam is S-polarized.  And when a linearly polarized light comes in, it similarly divided into two beams. But the energy ratio of the two outgoing beams depends on the polarization of the incident beam. Polarizing beamsplitter cubes are available for many laser wavelengths and broadband ranges.


1.2、How does a polarizing beamsplitter Cube work?

Polarizing Beamsplitter is designed to split unpolarized light at a specific Reflection/Transmission (R/T) ratio with unspecified polarization tendencies.

Polarizing beamsplitters are designed to split light into reflected S-polarized and transmitted P-polarized beams.


1.3、What is a Polarizing beamsplitter Cube used for?

Beamsplitter is also a kind of filter, it is used to split or combine laser beam. However Polarization BeamSplitters are used to split or combine two perpendicular polarization laser beam. The performance of beam splitter depends on the coating specifications.  They are common components in laser or illumination systems. Also ideal for fluorescence applications, optical interferometry, or life science or semiconductor instrumentation. Light can be split by percentage of overall intensity, wavelength, or polarization state.

To select a suitable beamsplitter, you need to consider the type, coating, transmission range and damage threshold.


1.4. Specifications:

Material:

BK7, Fused Silica, Borofloat etc. Glass

Diameter Tolerance:

+/-0.1mm

Flatness:

λ/4@633nm

Beam deviation:

3 arc min

Surface Quality:

60-40

Front surface (S1):

Partial reflective coating

Back surface (S2):

AR coating

Clear aperture:

>90%

Standard Coating:

T/R=50/50±5%, for random polarization ;

T=(Ts+Tp)/2,R=(Rs+Rp)/2


Note: Other sizes, split ratio and coating are available upon request.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Narrow Band Beamsplitters Cube
Non-Polarizing Cube Beamsplitters

Non-Polarizing Cube Beamsplitters also called NPBS Cube is a more sophisticated type consisting of two right- angle prisms cemented together at their hypotenuse faces.The cemented face of one prism is coated. Before cementing, with a metallic or dielectric layer having the desired reflecting properties, both in the percentage of reflection and the desired color. The absorption loss to the coating is minimal and transmission and reflection could be designed to 10%, 20%, 30%, 40%, 50%, etc.

Read More
Polarization Beamsplitter Cubes
Broadband Polarizing Cube Beamsplitters

Beamsplitter Cubes are constructed by cemented two right angle prisms.  The hypotenuse of one prism is coated with polarization dielectric coating.

Read More
Elliptical Plate Beamsplitters
Visible And NIR Plate Beamsplitters

Our beamsplitter plates can be used in high power laser system. When using beamsplitter plates, it is important to make it in mind that the two partial beams travel in different optical paths. The optical paths depend on the incident angle and the thickness of plates.

Read More
Quartz Windows Fused Silica Window
UV Fused Silica High-Precision Window

Fused silica window, with low thermal expansion,  providing stability and resistance to thermal shock over large temperature excursions, wide thermal operating range and high laser damage threshold, is a better choice for transmission from UV to IR.

Read More
N-BK7 Right Angle Prisms
High Precision Optical Glass Right Angle Prisms

In optics, a prism is a transparent optical element with flat, polished surfaces that refract light. At least two of the flat surfaces must have an angle between them. The exact angles between the surfaces depend on the application. The traditional geometrical shape is that of a triangular prism with a triangular base and rectangular sides, and in colloquial use "prism" usually refers to this type. Some types of optical prism are not in fact in the shape of geometric prisms. Prisms can be made from any material that is transparent to the wavelengths for which they are designed.

Read More
Diode pumped picosecond Pr:YLF laser crystals
Pr:YLF crystals Protactinium doped Yttrium Lithium Fluoride

HGO grows Pr:YLF laser crystals using Czochralski technology. Pr3+:YLF has been found as promising laser material for producing visible lasers directly and UV lasers through intracavity second-harmonic generation. Very few laser materials have the necessary properties for the realization of lasing in the visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for use with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark red (720 nm, 3P0 3F3+3F4) spectral regions.

Read More
KDP & DKDP/KD*P Crystal
KDP & DKDP Crystal Potassium Dihydrogen Phosphate and Potassium Dideuterium Phosphate

KDP Potassium Dihydrogen Phosphate and KD*P or DKDP Potassium Dideuterium Phosphate are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling and quadrupling of a Nd:YAG laser under the room temperature. In addition, they are also excellent electro-optic crystals with high electro-optic coefficients, widely used as electro-optical modulators, such as Q-switches, Pockels Cells, etc.

Read More
Cr4+:YAG passive q-switch
Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact