Products
Home /CRYSTALS /

Passive Q-switch

/Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Descriptions:


Cr4+:YAG (Y3Al5O12) Chromium Doped Yttrium AIuminum Garnet crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm.



Main applications:

1) Passively Q-switched lasers for laser rangefinders, LIDAR, and LIBS systems

2) Laser systems where short pulses are required


Advantages:

1) High chemica stability and reliability

2) Easy to operate

3) Long lifetime and good thermal conductivity


Basic properties of CrYAG

Chemical Formula

Cr4+:Y3Al5O12

Crystal Structure

Cubic

Mohs Scale of Mineral Hardness

8.5

Melting Point

1970 °C

Density, g/cm3

4.55

Coefficient of Thermal Conductivity @ 25°C, W x cm-1x °K-1

0.14

Coefficient of Thermal Expansion

8.2 x 10-6/ <100>

Young's Modulus

7.7x 106<100>

Thermal Shock Resistance

790 Wm-1


HGO offers CrYAG specifications:

Orientation:

<100> or <110>

Initial absorption coefficient

0.1~8.5cm-1@1064nm

Initial transmission

3%~98%

Wavefront Distortion:

λ/8per inch @ 632.8 nm

Dimension Tolerances

rods with diameter: +0.0/-0.05 mm , Length: ±0.1 mm

Surface Quality:

20/10 Scratch/Dig MIL-O-1380A

Parallelism:

< 10

Perpendicularity:

< 10

Clear Aperture:

> 90%

Surface Flatness:

< λ/10 @ 632.8 nm

Chamfer:

< 0.1 mm @ 45deg.

Size

Upon customer request

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz

Quality Warranty Period

One year under proper use


Why Choose HGO ?

HG OPTRONICS.,INC. supplies very high quality of Cr4+:YAG passive Q-switch crystals Chromium Doped Yttrium AIuminum Garnet. The use of high quality starting materials for crystal growth, boule interferometry, and precise measurement of initial transmission and absorption using transmission spectroscopy and ZYGO measurements, assures that each crystal will comply with customer’s specification and perform well in laser system.

Tolerance of initial transmission can be well controlled in as high precision as 0.5% which could be very essential to some delicate laser systems.

Besides, based on HGO’s advanced bonding technology, high quality of diffusion bonding between Nd3+, Yb3+ or other ions doped YAG host laser crystals and CrYAG are available from stock or for customization.

What is more,HGO have mature solutions for different laser parameters especially in microchips solution and our engineer are very glad to discuss and provide solutions for customers.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Co2+:MgAl2O4  Cospinel Q-switch
Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

Read More
Fiber Laser Protective Lens Machine Scanning
Laser Beam Collimation Lens

Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications. Laser Lenses include a range of lens types including HGQ Lenses, Cylinder Lenses, or Laser Generator Lenses. Laser Lenseare designed to focus light in several different ways depending on the lens type, such as focusing down to a point,a line, or a ring. Many different lens types are available in a range of wavelengths.

Read More
CaF2 crystal windows
CaF2 crystal Calcium Fluoride windows

CaF2 or Calcium Fluoride is a cubic crystal with an excellent transmission from 130 nm to 10 μm and has widespread applications as transparent windows in the ultraviolet and infrared spectra.

Read More
TmYLF laser crystal
Tm:YLF crystal Thulium-doped Yttrium Lithium Fluoride

HGO grows Tm:YLF laser crystals using Czochralski technology. Tm:YLF is an important middle infrared laser crystal. Because Tm:YLF is negative uniaxial crystal, whose thermal refractive index coefficient is negative, some thermal distortion may be counteracted and high-quality light can be output. Conveniently pumped at 792nm, 1.9μm linearly polarized beam is output in a axis, and non-linearly polarized beam is output in c axis. The YLF crystals has low non-linear refraction index value and thermo optical constants, which makes these crystals applicable in research, development, education, production, photonics, optic, laser technology and telecommunications. Besides, Tm3+:YLF lasers are ideal pump sources for 2.1 μm Ho3+:YAG lasers. This is due to a good overlap of Tm3+:YLF emission and Ho3+:YAG absorption spectra and the capacity of producing linearly polarized output. What is more, the refractive index of Tm3+:YLF decreases with temperature, leading to a negative thermal lens that is partly compensated by a positive lens effect due to end face bulging.

Read More
BBO Nonlinear crystal
BBO Nonlinear crystal Beta-Barium Borate Crystal

HGO grows BBO Nonlinear crystals using flux technology. BBO crystal transparency ranges from 188 nm to 5,2 µm, which includes reasonable transparency from 3-5,2 µm for few tens µm thick crystals, while their phase-matchable range spans almost over the entire transparency range. Combined with other magnificent properties of BBO, it is favorable for numerous nonlinear parametric applications. It is worth to mention that BBO crystals have the highest nonlinearity in the UV range out of all common nonlinear crystals.

Read More
Diode pumped picosecond Pr:YLF laser crystals
Pr:YLF crystals Protactinium doped Yttrium Lithium Fluoride

HGO grows Pr:YLF laser crystals using Czochralski technology. Pr3+:YLF has been found as promising laser material for producing visible lasers directly and UV lasers through intracavity second-harmonic generation. Very few laser materials have the necessary properties for the realization of lasing in the visible spectral range. Trivalent praseodymium (Pr3+) is known to be an interesting laser ion for use with solid-state lasers in the visible spectral range because of its energy levels scheme, providing several transitions in the red (640 nm, 3P0 to 3F2), orange (607 nm, 3P0 to 3H6), green (523 nm, 3P0 to 3H5), and dark red (720 nm, 3P0 3F3+3F4) spectral regions.

Read More
IR Windows Silicon Windows
Silicon Windows

Silicon is used as an optical window primarily in the 3 to 5 micron band and as a subsrate for production of optical filters and windows. Silicon (Si) is grown by Czochralski pulling techniques (CZ) and contains some oxygen that causes an absorption band at 9 microns. To avoid this, material can be prepared by a Float-Zone (FZ) process. Optical silicon is generally lightly doped (5 to 40 ohm cm) for best transmission above 10 microns, and doping is usually boron (P-type) and phosphorus (N-type). After doping silicon has a further pass band: 30 to 100 microns which is effective only in very high resistivity uncompensated material.

Read More
Reflective Of Colour Glass Window
AR Coated Colour Glass Window

Color glass changed the spectral properties of optical radiation. They therefore allow scientific experiments and industrial applications where that change is necessary. You can combine color glass filters together to change the bandpass or to increase the attenuation. Color glass change the spectral properties of optical radiation. They therefore allow scientific experiments and industrial applications where that change is necessary. You can combine color glass filters together to change the band pass or to  increase the attenuation.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact