Products
Home /CRYSTALS /

Passive Q-switch

/Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG crystals Chromium Doped Yttrium AIuminum Garnet

Cr4+:YAG (Y3Al5O12) crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm. Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply. A remarkable feature of Cr4+:YAG is the high damage threshold of >10 J/cm2@1064 nm, 10 ns. Its absorption band extends from 900 nm to 1200 nm and peaks around 1060 nm with a very large absorption cross-section.

  • Product Origin:

    China
  • Shipping Port:

    Fuzhou, China
  • Lead Time:

    3-4weeks
Share To : f t y b l ins
  • Product Detail

Descriptions:


Cr4+:YAG (Y3Al5O12) Chromium Doped Yttrium AIuminum Garnet crystal is ideal for passive Q-switch operation of Nd:YAG and other Nd3+ or Yb3+ doped laser crystals in the wavelength range of 900 nm to 1200 nm.



Main applications:

1) Passively Q-switched lasers for laser rangefinders, LIDAR, and LIBS systems

2) Laser systems where short pulses are required


Advantages:

1) High chemica stability and reliability

2) Easy to operate

3) Long lifetime and good thermal conductivity


Basic properties of CrYAG

Chemical Formula

Cr4+:Y3Al5O12

Crystal Structure

Cubic

Mohs Scale of Mineral Hardness

8.5

Melting Point

1970 °C

Density, g/cm3

4.55

Coefficient of Thermal Conductivity @ 25°C, W x cm-1x °K-1

0.14

Coefficient of Thermal Expansion

8.2 x 10-6/ <100>

Young's Modulus

7.7x 106<100>

Thermal Shock Resistance

790 Wm-1


HGO offers CrYAG specifications:

Orientation:

<100> or <110>

Initial absorption coefficient

0.1~8.5cm-1@1064nm

Initial transmission

3%~98%

Wavefront Distortion:

λ/8per inch @ 632.8 nm

Dimension Tolerances

rods with diameter: +0.0/-0.05 mm , Length: ±0.1 mm

Surface Quality:

20/10 Scratch/Dig MIL-O-1380A

Parallelism:

< 10

Perpendicularity:

< 10

Clear Aperture:

> 90%

Surface Flatness:

< λ/10 @ 632.8 nm

Chamfer:

< 0.1 mm @ 45deg.

Size

Upon customer request

Coating

AR/HR/PR coating upon customer’s request

Damage Threshold

750MW/CM2 at 1064nm, TEM00, 10ns, 10Hz

Quality Warranty Period

One year under proper use


Why Choose HGO ?

HG OPTRONICS.,INC. supplies very high quality of Cr4+:YAG passive Q-switch crystals Chromium Doped Yttrium AIuminum Garnet. The use of high quality starting materials for crystal growth, boule interferometry, and precise measurement of initial transmission and absorption using transmission spectroscopy and ZYGO measurements, assures that each crystal will comply with customer’s specification and perform well in laser system.

Tolerance of initial transmission can be well controlled in as high precision as 0.5% which could be very essential to some delicate laser systems.

Besides, based on HGO’s advanced bonding technology, high quality of diffusion bonding between Nd3+, Yb3+ or other ions doped YAG host laser crystals and CrYAG are available from stock or for customization.

What is more,HGO have mature solutions for different laser parameters especially in microchips solution and our engineer are very glad to discuss and provide solutions for customers.

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Related Products
Co2+:MgAl2O4  Cospinel Q-switch
Co2+:MgAl2O4 Cobalt-doped magnesium aluminate spinel

Co2+:MgAl2O4 Cospinel is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. Spinel is a hard, stable crystal that polishes well. Cobalt substitutes readily for magnesium in the Spinel host without the need for additional charge compensation ions. High absorption cross section (3.5×10-19 cm2) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10.

Read More
Uncoated N-Bk7 High Precision Optical Windows
AR Coated BK7 Windows

BK7 window is the most common type of window. It has good performance over visible and near infrared wavelength regions. At the same time, BK7 window is ideal for applications require minimal transmitted beam deviation. It is suitable for AR coating.

Read More
Precision Rod Lens For Medical Products
Micro Sizes Rod Lens

Rod Lenses are used for fiber coupling and laser diode beam shaping, lenses with a 0mm working distance are ideal for collimation of single and multi-mode optical fibers and laser diodes because the lens can be positioned and glued directly to the emission source. For focusing applications, or in instances where the lens can’t be in direct contact with the emission source, all lenses are available with a small working distance as well. HG OPTRONICS  can provide the size from Φ1~Φ15mm, quantity price and custom sizes, including variations in polished/ground surfaces, are available to customers upon request.

Read More
Large Size Plano Concave Cylindrical Lens
Plano-Concave Cylindrical Lenses

A cylindrical lens is a lens that focuses light on a line instead of a point, like a spherical lens. The curved face or faces of a cylindrical lens are sections of a cylinder, and focus the image passing through it into a line parallel to the intersection of the surface of the lens and a plane tangent to it. The lens compresses the image in the direction perpendicular to this line and leaves it unaltered in the direction parallel to it (in the tangent plane). In a light sheet microscope, a cylindrical lens is placed in front of the illumination objective to create the light sheet used for imaging. Cylindrical lenses focus or expand light in one axis only. They can be used to focus light into a thin line in optical metrology, laser scanning, spectroscopic, laser diode, acousto-optic, and optical processor applications. They can also be used to expand the output of a laser diode into a symmetrical beam. Cylindrical lenses are widely used in telecom applications like WSS, 40G/100G modules and laser applications like pump laser modules

Read More
Fiber Laser Protective Lens Machine Scanning
Laser Beam Collimation Lens

Laser Lenses are used to focus collimated light from laser beams in a variety of laser applications. Laser Lenses include a range of lens types including HGQ Lenses, Cylinder Lenses, or Laser Generator Lenses. Laser Lenseare designed to focus light in several different ways depending on the lens type, such as focusing down to a point,a line, or a ring. Many different lens types are available in a range of wavelengths.

Read More
 High Precision Optical Glass Penta Prisms
UV Fused Silica Penta Prisms

Penta Prisms are used to define right angles in optical systems. Penta Prisms, which provide right handed images,feature a ray deviation of 90°. Penta Prisms are five-sided prisms are unaffected by slight movements. HG OPTRONICS offers a variety of Penta Prisms for optimal performance in the Ultraviolet (UV), Visible, or Infrared (IR) spectrums.

Read More
China IR Windows Calcium Fluoride CaF2 Windows Suppliers
IR Windows Calcium Fluoride CaF2 Windows

Calcium Fluoride windows and lenses for UV and IR spectrum. Custom made CaF2 windows, CaF2 lenses and wedges according to customer's specifications. CaF2 windows up to 220mm diameter; CaF2 wedges, prisms and CaF2 mirrors; Excimer CaF2 optics, Raman grade CaF2 optics and etc.

Read More
TmYLF laser crystal
Tm:YLF crystal Thulium-doped Yttrium Lithium Fluoride

HGO grows Tm:YLF laser crystals using Czochralski technology. Tm:YLF is an important middle infrared laser crystal. Because Tm:YLF is negative uniaxial crystal, whose thermal refractive index coefficient is negative, some thermal distortion may be counteracted and high-quality light can be output. Conveniently pumped at 792nm, 1.9μm linearly polarized beam is output in a axis, and non-linearly polarized beam is output in c axis. The YLF crystals has low non-linear refraction index value and thermo optical constants, which makes these crystals applicable in research, development, education, production, photonics, optic, laser technology and telecommunications. Besides, Tm3+:YLF lasers are ideal pump sources for 2.1 μm Ho3+:YAG lasers. This is due to a good overlap of Tm3+:YLF emission and Ho3+:YAG absorption spectra and the capacity of producing linearly polarized output. What is more, the refractive index of Tm3+:YLF decreases with temperature, leading to a negative thermal lens that is partly compensated by a positive lens effect due to end face bulging.

Read More
Leave A Message
Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact